Advertisements
Advertisements
प्रश्न
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
उत्तर
`1/x + 1/y = 1/(tan "A" - tan "B") + 1/(cot "B" - cot "A")`
= `1/(tan "A" - tan "B") + 1/(1/tan "B" - 1/(tan "A"))`
= `1/(tan "A" - tan "B") + 1/(((tan "A" - tan "B")/(tan "A" tan "B")))`
= `1/(tan "A" - tan "B") + (tan "A" tan "B")/(tan "A" - tan "B") = (1 + tan "A" tan "B")/(tan "A" - tan "B")`
`= 1/(tan ("A - B")) ....(because tan ("A - B") = (tan "A" - tan "B")/(1 - tan "A" tan "B"))`
= cot (A - B) = LHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin (-105°)
Prove that 2 tan 80° = tan 85° – tan 5°.
If cot α = `1/2`, sec β = `(-5)/3`, where π < α < `(3pi)/2 and pi/2` < β < π, find the value of tan(α + β). State the quadrant in which α + β terminates.
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
If sin A = `12/13`, find sin 3A.
If sin A = `3/5`, find the values of cos 3A and tan 3A.
The value of sec A sin(270° + A) is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to:
If p sec 50° = tan 50° then p is: