Advertisements
Advertisements
प्रश्न
Prove that 2 tan 80° = tan 85° – tan 5°.
उत्तर
Consider tan 80° = tan(85° – 5°)
`= (tan 85° - tan 5°)/(1 + tan 85° tan 5°)`
`= (tan 85° - tan 5°)/(1 + tan 85° tan (90° - 85°))`
`= (tan 85^circ - tan 5^circ)/(1 + tan 85^circ xx cot 85^circ)`
`= (tan 85^circ - tan 5^circ)/(1 + 1)`
`= (tan 85^circ - tan 5^circ)/2`
∴ 2 tan 80° = tan 85° – tan 5°
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Find the value of sin 75°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
The value of cos2 45° – sin2 45° is:
The value of 1 – 2 sin2 45° is:
The value of `(2 tan 30^circ)/(1 + tan^2 30^circ)` is:
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: