Advertisements
Advertisements
प्रश्न
If sin A = `3/5`, find the values of cos 3A and tan 3A.
उत्तर
Given sin A = `3/5`
cos A = `"Adjacent side"/"Hypotenuse" = 4/5`
and tan A = `Opposite side/"Adjacent side" = 3/4`
We know that cos 3A = 4 cos3 A – 3 cos A
`= 4(4/5)^3 - 3(4/5)`
`= (4/5)[4 xx (4/5)^2 - 3] = 4/5[4 xx 16/25 - 3]`
`= 4/5[(64 - 3 xx 25)/(25)]`
`= 4/5((64 - 75)/25)`
`= 4/5 xx (-11)/25 = (-44)/125`
tan 3A = `(3 tan "A" - 4tan^3 "A")/(1 - 3 tan^2"A")`
`= (3(3/4) - (3/4)^3)/(1 - 3(3/4)^2)`
`= (3/4[3 - (3/4)^2])/(1 - 3 xx 9/16)`
`= (3/4 [(48 - 9)/16])/((16 - 27)/16)`
`= 3/4[39/16 xx 16/(-11)]`
`= (- 117)/44`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
Prove that:
sin(A + 60°) + sin(A – 60°) = sin A.
Prove that:
tan 4A tan 3A tan A + tan 3A + tan A – tan 4A = 0
Prove that `(sin ("B - C"))/(cos "B" cos "C") + (sin ("C - A"))/(cos "C" cos "A") + (sin ("A - B"))/(cos "A" cos "B")` = 0
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Find the value of tan 15°.
If sin A = `1/3`, sin B = `1/4` then find the value of sin (A + B) where A and B are acute angles.
Show that `cos^-1 (12/13) + sin^-1 (3/5) = sin^-1 (56/65)`
The value of sin 28° cos 17° + cos 28° sin 17°