Advertisements
Advertisements
प्रश्न
Find the value of tan 15°.
उत्तर
tan 15° = tan (45° - 30°)
`= (tan 45^circ - tan 30^circ)/(1 + tan 45^circ tan 30^circ)`
`[because tan ("A - B") = (tan "A" - tan "B")/(1 + tan "A" tan "B")]`
`= (1 - 1/sqrt3)/(1 + 1 (1)/sqrt3)`
`= ((sqrt3- 1)/sqrt3)/((sqrt3 + 1)/sqrt3)`
`= (sqrt3 - 1)/cancel(sqrt3) xx cancel(sqrt3)/(sqrt3 + 1)`
`= (sqrt3 - 1)/(sqrt3 + 1) xx (sqrt3 - 1)/(sqrt3 - 1)`
`= (3 + 1 - 2sqrt3)/(3 - 1)`
`= (4 - 2sqrt3)/2`
`= 2 - sqrt3`
APPEARS IN
संबंधित प्रश्न
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
Find the value of the following:
`sin pi/4 cos pi/12 + cos pi/4 sin pi/12`
Find the value of the following:
cos 70° cos 10° – sin 70° sin 10°
If sin A = `12/13`, find sin 3A.
If tan A – tan B = x and cot B – cot A = y prove that cot(A – B) = `1/x + 1/y`.
If tan x = `3/4` and `pi < x < (3pi)/2`, then find the value of sin `x/2` and cos `x/2`.
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
The value of sin 15° cos 15° is:
The value of sec A sin(270° + A) is: