Advertisements
Advertisements
Question
The value of cos(-480°) is:
Options
`sqrt3`
`- sqrt3/2`
`1/2`
`(-1)/2`
Solution
`(-1)/2`
Explanation:
cos(-480°) = cos 480° [∵ cos(-θ) = cos θ]
= cos(360° + 120°)
= cos 120°
= cos(180° – 60°)
= -cos 60°
= `(-1)/2`
APPEARS IN
RELATED QUESTIONS
If sin A = `3/5`, 0 < A < `pi/2` and cos B = `(-12)/13`, π < B < `(3pi)/2`, find the values of the following:
- cos(A + B)
- sin(A – B)
- tan(A – B)
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If tan α = `1/7`, sin β = `1/sqrt10`. Prove that α + 2β = `pi/4` where 0 < α < `pi/2` and 0 < β < `pi/2`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
Prove that `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3` = 10
Find the value of sin 75°.
The value of sin 28° cos 17° + cos 28° sin 17°
If tan A = `1/2` and tan B = `1/3` then tan(2A + B) is equal to: