Advertisements
Advertisements
Question
If cos A = `13/14` and cos B = `1/7` where A, B are acute angles prove that A – B = `pi/3`
Solution
cos A = `13/14`, cos B = `1/7`
sin A = `sqrt(1 - cos^2"A")`
`= sqrt(1 - 1/49) = sqrt(48/49) = sqrt48/7 = (4sqrt3)/7`
cos(A – B) = cos A cos B + sin A sin B
`= 13/14 xx 1/7 + (3sqrt3)/14 xx (4sqrt3)/7`
`= 13/98 + 36/98 = 49/98 = 1/2`
cos(A – B) = cos 60°
A – B = 60° = `pi/3`
APPEARS IN
RELATED QUESTIONS
Find the value of the following:
cot 75°
Find the value of the following:
sin 76° cos 16° – cos 76° sin 16°
If A + B = 45°, prove that (1 + tan A) (1 + tan B) = 2 and hence deduce the value of tan 22`1/2`.
If sin A = `3/5`, find the values of cos 3A and tan 3A.
If sin α + sin β = a and cos α + cos β = b, then prove that cos(α – β) = `(a^2 + b^2 - 2)/2`
Find the value of tan `pi/8`.
Prove that cot 4x (sin 5x + sin 3x) = cot x(sin 5x - sin 3x).
The value of sin (-420°)
The value of 1 – 2 sin2 45° is:
The value of 4 cos3 40° – 3 cos 40° is