Advertisements
Advertisements
प्रश्न
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
उत्तर
LHS = `sqrt3 "cosec" 20^circ - sin 20^circ`
`= sqrt3 * 1/(sin 20^circ) - 1/(cos 20^circ)`
`= (sqrt3 cos 20^circ - sin 20^circ)/(sin 20^circ cos 20^circ)`
`= 2 [(sqrt3/2 cos 20^circ - 1/2 sin 20^circ)/(sin 20^circ cos 20^circ)]`
`= 2 (sin 60^circ cos 20^circ - cos 60^circ sin 20^circ)/(sin 20^circ cos 20^circ)`
`[because sin 60^circ = sqrt3/2 and cos 60^circ = 1/2]`
`= 2 (sin (60^circ - 20^circ))/(sin 20^circ cos 20^circ)`
`= (2 sin 40^circ)/(sin 20^circ cos 40^circ)`
`= (4 sin 40^circ)/(2 sin 20^circ cos 20^circ)`
`= (4 sin 40^circ)/(sin 40^circ)`
[∵ 2 sin A cos A = sin 2A]
= 4 = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
150°
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Find the degree measure corresponding to the following radian measure.
-3
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
The radian measure of 37°30′ is:
If sin A = `1/2` then 4 cos3 A – 3 cos A is:
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is: