Advertisements
Advertisements
Question
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
Solution
LHS = `sqrt3 "cosec" 20^circ - sin 20^circ`
`= sqrt3 * 1/(sin 20^circ) - 1/(cos 20^circ)`
`= (sqrt3 cos 20^circ - sin 20^circ)/(sin 20^circ cos 20^circ)`
`= 2 [(sqrt3/2 cos 20^circ - 1/2 sin 20^circ)/(sin 20^circ cos 20^circ)]`
`= 2 (sin 60^circ cos 20^circ - cos 60^circ sin 20^circ)/(sin 20^circ cos 20^circ)`
`[because sin 60^circ = sqrt3/2 and cos 60^circ = 1/2]`
`= 2 (sin (60^circ - 20^circ))/(sin 20^circ cos 20^circ)`
`= (2 sin 40^circ)/(sin 20^circ cos 40^circ)`
`= (4 sin 40^circ)/(2 sin 20^circ cos 20^circ)`
`= (4 sin 40^circ)/(sin 40^circ)`
[∵ 2 sin A cos A = sin 2A]
= 4 = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
240°
Find the degree measure corresponding to the following radian measure.
`pi/8`
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Determine the quadrant in which the following degree lie.
380°
Determine the quadrant in which the following degree lie.
-140°
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
If sin A = `1/2` then 4 cos3 A – 3 cos A is:
sec-1 `(2/3)` + cosec-1 `(2/3)`=