Advertisements
Advertisements
Question
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
Solution
LHS = `(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)`
`= (2 cos ((4x + 2x)/2) * cos ((4x - 2x)/2) + cos 3x)/(2sin ((4x + 2x)/2) * cos((4x - 2x)/2) + sin 3x)`
`[because cos "C" + cos "D" = 2cos (("C + D")/2) cos (("C - D")/2) and sin "C" + sin "D" = 2 sin (("C + D")/2) cos (("C - D")/2)]`
`= (cos 3x * cos x + cos 3x)/(sin 3x * cos x + sin 3x)`
`= (cos 3x cancel((cosx + 1)))/(sin 3x cancel((cos x + 1)))`
= cot 3x = RHS
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
150°
Convert the following degree measure into radian measure.
60°
Find the degree measure corresponding to the following radian measure.
`pi/8`
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Find the values of the following trigonometric ratio.
sin 300°
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is: