Advertisements
Advertisements
Question
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Solution
We know that, one radian = `180^circ/pi`
`(11pi)/18 = 180^circ/pi xx (11pi)/18`
= 10 × 11°
= 110°
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
150°
Convert the following degree measure into radian measure.
- 320°
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
The radian measure of 37°30′ is:
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of `1/("cosec" (-45^circ))` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: