Advertisements
Advertisements
Question
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
Solution
LHS = `(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))`
`= ((- sin "A")(sin "A")(cot "A"))/((- sec "A")(cos "A")(- sec "A"))` .....`[(sec (540° - "A")),(= sec (360° + 180° - "A")),(= sec (180° - "A")),(= (- sec "A"))]`
`= (- sin "A" sin "A" (cos "A")/(sin "A"))/(- 1/(cos "A")cos "A" - 1/(cos "A"))`
= - sin A × cos A × cos A
= - sin A cos2A = RHS
APPEARS IN
RELATED QUESTIONS
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Determine the quadrant in which the following degree lie.
-140°
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
The radian measure of 37°30′ is:
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of cosec-1 `(2/sqrt3)` is: