Advertisements
Advertisements
Question
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Solution
LHS = cos 510° cos 330° + sin 390° cos 120°
= cos(360° + 150°) cos(360° – 30°) + sin(360° + 30°) × cos(180° – 60°)
= cos 150° cos 30° + sin 30° (-cos 60°)
= cos(180° – 30°) cos 30° + sin 30° cos 60°
= -cos 30° cos 30° + `1/2 xx ((-1)/2)`
`= - sqrt3/2 xx sqrt3/2 - 1/2 xx 1/2`
`= - 3/4 - 1/4`
`= (- 3 - 1)/4`
= - 1
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
150°
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
sec 390°
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
The radian measure of 37°30′ is:
tan`(pi/4 - x)` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: