Advertisements
Advertisements
Question
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
Solution
LHS = 2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3`
[∵ `(7pi)/6` = 210°, 210° = 180° + 30°. For 180° + 30° no change in T-ratio. 210° lies in 3rd quadrant, cosec θ is negative.]
`= 2(sin pi/6)^2 + ("cosec" (180^circ + 30^circ))^2 (cos pi/3)^2`
`= 2(1/2)^2 + (- "cosec" 30^circ)^2 * (1/2)^2`
`= 2 xx 1/4 + (- 2)^2 1/4`
`= 2/4 + 4/4 = 6/4`
`= 6/4`
`= 3/2`
= RHS
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
- 320°
Determine the quadrant in which the following degree lie.
380°
Find the values of the following trigonometric ratio.
sin 300°
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
The degree measure of `pi/8` is
The radian measure of 37°30′ is:
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: