English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

Prove that: sec(3π2-θ)sec(θ-5π2)+tan(5π2+θ)tan(θ-5π2) = - 1 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that:

`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1

Sum

Solution

`sec((3pi)/2 - theta)` = sec (270° – θ) = -cosec θ

[∵ For 270° – θ change T-ratio. So add ‘co’ infront ‘sec’, it becomes ‘cosec’]

`sec(theta - (5pi)/2) = sec (- ((5pi)/2 - theta))`

`= sec ((5pi)/2 - theta)`  ...[∵ sec(-θ) = θ]

= sec(450° – θ)

= sec (360° + (90° – θ))

= sec (90° – θ)

= cosec θ

[∵ For 90° – θ change in T-ratio. So add ‘co’ in front of ‘sec’ it becomes ‘cosec’]

`tan((5pi)/2 + theta)` = tan(450° + θ)

[∵ For 90° + θ, change in T-ratio. So add ‘co’ in front of ‘tan’ it becomes ‘cot’]

= tan (360° + (90° + θ))

= tan (90° + θ)

= -cot θ

`tan(theta - (5pi)/2) = tan(-((5pi)/2 - theta))`

`= - tan((5pi)/2 - theta)`  ...[∵ tan(-θ) = -tan θ]

= -tan(450° – θ)

= -tan(360° + (90° – θ))

= -tan(90° – θ)

= -cot θ

LHS = `sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)`

= -cosec θ (cosec θ) + (-cot θ) (-cot θ)

= -cosecθ + cotθ

= -(1 + cotθ) + cotθ [∵ 1 + cotθ = cosecθ]

= -1

= RHS

shaalaa.com
Trigonometric Ratios
  Is there an error in this question or solution?
Chapter 4: Trigonometry - Exercise 4.1 [Page 81]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 4 Trigonometry
Exercise 4.1 | Q 5. (iii) | Page 81
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×