Advertisements
Advertisements
Question
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
Solution
`sec((3pi)/2 - theta)` = sec (270° – θ) = -cosec θ
[∵ For 270° – θ change T-ratio. So add ‘co’ infront ‘sec’, it becomes ‘cosec’]
`sec(theta - (5pi)/2) = sec (- ((5pi)/2 - theta))`
`= sec ((5pi)/2 - theta)` ...[∵ sec(-θ) = θ]
= sec(450° – θ)
= sec (360° + (90° – θ))
= sec (90° – θ)
= cosec θ
[∵ For 90° – θ change in T-ratio. So add ‘co’ in front of ‘sec’ it becomes ‘cosec’]
`tan((5pi)/2 + theta)` = tan(450° + θ)
[∵ For 90° + θ, change in T-ratio. So add ‘co’ in front of ‘tan’ it becomes ‘cot’]
= tan (360° + (90° + θ))
= tan (90° + θ)
= -cot θ
`tan(theta - (5pi)/2) = tan(-((5pi)/2 - theta))`
`= - tan((5pi)/2 - theta)` ...[∵ tan(-θ) = -tan θ]
= -tan(450° – θ)
= -tan(360° + (90° – θ))
= -tan(90° – θ)
= -cot θ
LHS = `sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)`
= -cosec θ (cosec θ) + (-cot θ) (-cot θ)
= -cosec2 θ + cot2 θ
= -(1 + cot2 θ) + cot2 θ [∵ 1 + cot2 θ = cosec2 θ]
= -1
= RHS
APPEARS IN
RELATED QUESTIONS
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Determine the quadrant in which the following degree lie.
380°
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
cos (-210°)
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is: