Advertisements
Advertisements
Question
Find the values of the following trigonometric ratio.
sin 300°
Solution
sin 300° = sin(360° – 60°)
[For 360° – 60°. No change in T-ratio. 300° lies in 4th quadrant ‘sin’ is negative]
= - sin 60°
`= - sqrt3/2`
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
240°
Find the degree measure corresponding to the following radian measure.
`pi/8`
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
If sin A = `1/2` then 4 cos3 A – 3 cos A is:
The value of cosec-1 `(2/sqrt3)` is:
The value of `1/("cosec" (-45^circ))` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: