Advertisements
Advertisements
Question
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
Solution
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = (tan x) (-cot(π – x) – cos x cos x
[∵ cot(x – π) = cot(-(π – x)) = -cot(π – x) = cot x]
= tan x cot x – cos2 x
= 1 – cos2 x
= sin2 x [∵ sin2 x + cos2 x = 1 ⇒ sin2 x = (1 – cos2 x)]
APPEARS IN
RELATED QUESTIONS
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
tan`(pi/4 - x)` is:
`sin (cos^-1 3/5)` is
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: