Advertisements
Advertisements
प्रश्न
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
उत्तर
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = (tan x) (-cot(π – x) – cos x cos x
[∵ cot(x – π) = cot(-(π – x)) = -cot(π – x) = cot x]
= tan x cot x – cos2 x
= 1 – cos2 x
= sin2 x [∵ sin2 x + cos2 x = 1 ⇒ sin2 x = (1 – cos2 x)]
APPEARS IN
संबंधित प्रश्न
Determine the quadrant in which the following degree lie.
1195°
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
If A, B, C, D are angles of a cyclic quadrilateral, prove that: cos A + cos B + cos C + cos D = 0.
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
If sin A = `1/2` then 4 cos3 A – 3 cos A is:
The value of cosec-1 `(2/sqrt3)` is:
The value of `1/("cosec" (-45^circ))` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: