Advertisements
Advertisements
प्रश्न
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
उत्तर
LHS = `sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}`
`= sin theta * cos theta {cos theta 1/(sin theta) + sin theta * 1/(cos theta)}`
`= sin theta * cos theta ((cos^2theta + sin^2theta)/(sin theta cos theta))`
= cos2θ + sin2θ = 1 = RHS ...[since sin2θ + cos2θ = 1]
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
150°
Convert the following degree measure into radian measure.
60°
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Find the values of the following trigonometric ratio.
sec 390°
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
The degree measure of `pi/8` is
tan`(pi/4 - x)` is:
The value of `1/("cosec" (-45^circ))` is: