Advertisements
Advertisements
प्रश्न
Find the values of the following trigonometric ratio.
sec 390°
उत्तर
sec 390° = sec(360° + 30°)
= sec 30°
`= 1/(cos 30^circ)`
`= 1/((sqrt3/2))`
`= 2/sqrt3`
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
60°
Find the degree measure corresponding to the following radian measure.
`pi/8`
Determine the quadrant in which the following degree lie.
380°
Determine the quadrant in which the following degree lie.
1195°
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
sec-1 `(2/3)` + cosec-1 `(2/3)`=
`sin (cos^-1 3/5)` is