Advertisements
Advertisements
प्रश्न
Find the values of the following trigonometric ratio.
sec 390°
उत्तर
sec 390° = sec(360° + 30°)
= sec 30°
`= 1/(cos 30^circ)`
`= 1/((sqrt3/2))`
`= 2/sqrt3`
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
240°
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
tan`(pi/4 - x)` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: