Advertisements
Advertisements
प्रश्न
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
उत्तर
LHS = `(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)`
`= (2 cos ((4x + 2x)/2) * cos ((4x - 2x)/2) + cos 3x)/(2sin ((4x + 2x)/2) * cos((4x - 2x)/2) + sin 3x)`
`[because cos "C" + cos "D" = 2cos (("C + D")/2) cos (("C - D")/2) and sin "C" + sin "D" = 2 sin (("C + D")/2) cos (("C - D")/2)]`
`= (cos 3x * cos x + cos 3x)/(sin 3x * cos x + sin 3x)`
`= (cos 3x cancel((cosx + 1)))/(sin 3x cancel((cos x + 1)))`
= cot 3x = RHS
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
240°
Convert the following degree measure into radian measure.
- 320°
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Determine the quadrant in which the following degree lie.
380°
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is: