Advertisements
Advertisements
प्रश्न
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
उत्तर
LHS = `sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}`
`= sin theta * cos theta {cos theta 1/(sin theta) + sin theta * 1/(cos theta)}`
`= sin theta * cos theta ((cos^2theta + sin^2theta)/(sin theta cos theta))`
= cos2θ + sin2θ = 1 = RHS ...[since sin2θ + cos2θ = 1]
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
- 320°
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Determine the quadrant in which the following degree lie.
1195°
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
The radian measure of 37°30′ is:
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of cosec-1 `(2/sqrt3)` is:
The value of `1/("cosec" (-45^circ))` is: