Advertisements
Advertisements
प्रश्न
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
उत्तर
LHS = cos 510° cos 330° + sin 390° cos 120°
= cos(360° + 150°) cos(360° – 30°) + sin(360° + 30°) × cos(180° – 60°)
= cos 150° cos 30° + sin 30° (-cos 60°)
= cos(180° – 30°) cos 30° + sin 30° cos 60°
= -cos 30° cos 30° + `1/2 xx ((-1)/2)`
`= - sqrt3/2 xx sqrt3/2 - 1/2 xx 1/2`
`= - 3/4 - 1/4`
`= (- 3 - 1)/4`
= - 1
APPEARS IN
संबंधित प्रश्न
Find the degree measure corresponding to the following radian measure.
-3
Determine the quadrant in which the following degree lie.
380°
Determine the quadrant in which the following degree lie.
-140°
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
sec 390°
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
If sin A = `1/2` then 4 cos3 A – 3 cos A is: