Advertisements
Advertisements
प्रश्न
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
उत्तर
tan(-225°) = -(tan 225°)
= -(tan(180° + 45°))
= – tan 45°
= – 1
cot(-405°) = -(cot 405°)
= – cot(360° + 45°) ....[∵ For 360° + 45° no change in T-ratio.]
= -cot 45°
= -1
tan(-765°) = -tan 765°
= -tan(2 × 360° + 45°)
= -tan 45°
= -1
cot 675° = cot (360°+ 315°)
= cot 315°
= cot(360° – 45°)
= -cot 45°
= -1
LHS = tan(-225°) cot(-405°) – tan(-765°) cot(675°)
= (-1) (-1) – (-1) (-1)
= 1 – 1
= 0
= RHS.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the degree measure corresponding to the following radian measure.
`pi/8`
Determine the quadrant in which the following degree lie.
380°
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
sec 390°
Find the values of the following trigonometric ratio.
tan(-855°)
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
The value of `1/("cosec" (-45^circ))` is: