Advertisements
Advertisements
प्रश्न
Prove that:
tan(-225°) cot(-405°) – tan(-765°) cot(675°) = 0.
उत्तर
tan(-225°) = -(tan 225°)
= -(tan(180° + 45°))
= – tan 45°
= – 1
cot(-405°) = -(cot 405°)
= – cot(360° + 45°) ....[∵ For 360° + 45° no change in T-ratio.]
= -cot 45°
= -1
tan(-765°) = -tan 765°
= -tan(2 × 360° + 45°)
= -tan 45°
= -1
cot 675° = cot (360°+ 315°)
= cot 315°
= cot(360° – 45°)
= -cot 45°
= -1
LHS = tan(-225°) cot(-405°) – tan(-765°) cot(675°)
= (-1) (-1) – (-1) (-1)
= 1 – 1
= 0
= RHS.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
60°
Find the degree measure corresponding to the following radian measure.
-3
Determine the quadrant in which the following degree lie.
1195°
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
If A, B, C, D are angles of a cyclic quadrilateral, prove that: cos A + cos B + cos C + cos D = 0.
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
tan`(pi/4 - x)` is: