Advertisements
Advertisements
प्रश्न
Prove that:
2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3 = 3/2`
उत्तर
LHS = 2 sin2 `pi/6` + cosec2 `(7pi)/6` cos2 `pi/3`
[∵ `(7pi)/6` = 210°, 210° = 180° + 30°. For 180° + 30° no change in T-ratio. 210° lies in 3rd quadrant, cosec θ is negative.]
`= 2(sin pi/6)^2 + ("cosec" (180^circ + 30^circ))^2 (cos pi/3)^2`
`= 2(1/2)^2 + (- "cosec" 30^circ)^2 * (1/2)^2`
`= 2 xx 1/4 + (- 2)^2 1/4`
`= 2/4 + 4/4 = 6/4`
`= 6/4`
`= 3/2`
= RHS
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
150°
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
tan(π + x) cot(x – π) – cos(2π – x) cos(2π + x) = sin2 x.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
The value of cosec-1 `(2/sqrt3)` is:
tan`(pi/4 - x)` is:
The value of `1/("cosec" (-45^circ))` is: