Advertisements
Advertisements
प्रश्न
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
उत्तर
We know that, one radian = `180^circ/pi`
`(9pi)/5 = 180^circ/pi xx (9pi)/5` degrees
= 36 × 9 degrees
= 324°
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
240°
Find the degree measure corresponding to the following radian measure.
`pi/8`
Determine the quadrant in which the following degree lie.
-140°
Find the values of the following trigonometric ratio.
cosec 1125°
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
The degree measure of `pi/8` is
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of `1/("cosec" (-45^circ))` is: