Advertisements
Advertisements
प्रश्न
Find the values of the following trigonometric ratio.
tan(-855°)
उत्तर
tan(-855°) = -tan 855° (∵ tan(-θ) = – tan θ)
[∵ Multiplies of 360° are dropped out. For 180° – 45°. No change in T-ratio. 180° – 45° lies in 2nd quadrant ‘tan’ is negative]
= -tan(2 × 360° + 135°)
= -tan 135°
= -tan(180° – 45°)
= -(-tan 45°)
= -(-1)
= 1
APPEARS IN
संबंधित प्रश्न
Find the degree measure corresponding to the following radian measure.
`pi/8`
Find the degree measure corresponding to the following radian measure.
-3
Determine the quadrant in which the following degree lie.
1195°
Find the values of the following trigonometric ratio.
cos (-210°)
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
The degree measure of `pi/8` is
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of cosec-1 `(2/sqrt3)` is:
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: