Advertisements
Advertisements
Question
Find the values of the following trigonometric ratio.
tan(-855°)
Solution
tan(-855°) = -tan 855° (∵ tan(-θ) = – tan θ)
[∵ Multiplies of 360° are dropped out. For 180° – 45°. No change in T-ratio. 180° – 45° lies in 2nd quadrant ‘tan’ is negative]
= -tan(2 × 360° + 135°)
= -tan 135°
= -tan(180° – 45°)
= -(-tan 45°)
= -(-1)
= 1
APPEARS IN
RELATED QUESTIONS
Convert the following degree measure into radian measure.
240°
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
sec 390°
Prove that:
`sec((3pi)/2 - theta) sec(theta - (5pi)/2) + tan((5pi)/2 + theta) tan(theta - (5pi)/2)` = - 1
If A, B, C, D are angles of a cyclic quadrilateral, prove that: cos A + cos B + cos C + cos D = 0.
The radian measure of 37°30′ is:
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
The value of `1/("cosec" (-45^circ))` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: