Advertisements
Advertisements
Question
The value of `(3 tan 10^circ - tan^3 10^circ)/(1 - 3 tan^2 10^circ)` is:
Options
`1/sqrt3`
`1/2`
`sqrt3/2`
`1/sqrt2`
Solution
`1/sqrt3`
APPEARS IN
RELATED QUESTIONS
Determine the quadrant in which the following degree lie.
380°
Determine the quadrant in which the following degree lie.
-140°
Find the values of the following trigonometric ratio.
cos (-210°)
Find the values of the following trigonometric ratio.
sec 390°
Find the values of the following trigonometric ratio.
tan(-855°)
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that: cos 510° cos 330° + sin 390° cos 120° = -1.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
sec-1 `(2/3)` + cosec-1 `(2/3)`=