Advertisements
Advertisements
प्रश्न
Prove that `sqrt3 "cosec" 20^circ - sin 20^circ` = 4
उत्तर
LHS = `sqrt3 "cosec" 20^circ - sin 20^circ`
`= sqrt3 * 1/(sin 20^circ) - 1/(cos 20^circ)`
`= (sqrt3 cos 20^circ - sin 20^circ)/(sin 20^circ cos 20^circ)`
`= 2 [(sqrt3/2 cos 20^circ - 1/2 sin 20^circ)/(sin 20^circ cos 20^circ)]`
`= 2 (sin 60^circ cos 20^circ - cos 60^circ sin 20^circ)/(sin 20^circ cos 20^circ)`
`[because sin 60^circ = sqrt3/2 and cos 60^circ = 1/2]`
`= 2 (sin (60^circ - 20^circ))/(sin 20^circ cos 20^circ)`
`= (2 sin 40^circ)/(sin 20^circ cos 40^circ)`
`= (4 sin 40^circ)/(2 sin 20^circ cos 20^circ)`
`= (4 sin 40^circ)/(sin 40^circ)`
[∵ 2 sin A cos A = sin 2A]
= 4 = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Convert the following degree measure into radian measure.
240°
Determine the quadrant in which the following degree lie.
380°
Find the values of the following trigonometric ratio.
sin 300°
Find the values of the following trigonometric ratio.
cosec 1125°
If A, B, C, D are angles of a cyclic quadrilateral, prove that: cos A + cos B + cos C + cos D = 0.
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
The radian measure of 37°30′ is:
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is:
tan`(pi/4 - x)` is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: