Advertisements
Advertisements
Question
Prove that:
`sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}` = 1
Solution
LHS = `sin theta * cos theta {sin(pi/2 - theta) * "cosec" theta + cos (pi/2 - theta) * sec theta}`
`= sin theta * cos theta {cos theta 1/(sin theta) + sin theta * 1/(cos theta)}`
`= sin theta * cos theta ((cos^2theta + sin^2theta)/(sin theta cos theta))`
= cos2θ + sin2θ = 1 = RHS ...[since sin2θ + cos2θ = 1]
APPEARS IN
RELATED QUESTIONS
Find the degree measure corresponding to the following radian measure.
`(9pi)/5`
Find the degree measure corresponding to the following radian measure.
`(11pi)/18`
Prove that:
`(sin(180^circ - theta)cos(90^circ + theta)tan(270^circ - theta)cot(360^circ - theta))/(sin(360^circ - theta)cos(360^circ + theta)sin(270^circ - theta)cosec (-theta))` = -1
Prove that:
`(sin(180^circ + "A")cos(90^circ - "A")tan(270^circ - "A"))/(sec(540^circ - "A") cos(360^circ + "A") "cosec"(270^circ + "A"))` = - sin A cos2 A.
If sin θ = `3/5`, tan φ = `1/2 and pi/2` < θ < π < φ < `(3pi)/2,`, then find the value of 8 tan θ – `sqrt5` sec φ.
Prove that:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x)` = cot 3x
The degree measure of `pi/8` is
sec-1 `(2/3)` + cosec-1 `(2/3)`=
If α and β be between 0 and `pi/2` and if cos(α + β) = `12/13` and sin (α – β) = `3/5` then sin 2α is:
`((cos x)/(cosec x)) - sqrt(1 - sin^2x) sqrt(1 - cos^2 x)` is: