मराठी

If Tan α = X X + 1 and Tan β = 1 2 X + 1 , Then Tan β = 1 2 X + 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 

पर्याय

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

  • \[\frac{\pi}{2}\]

     

MCQ
बेरीज

उत्तर

It is given that \[\tan\alpha = \frac{x}{x + 1}\] and \[\tan\beta = \frac{x}{x + 1}\] 

Now,
\[\tan\left( \alpha + \beta \right) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}\]
\[ = \frac{\frac{x}{x + 1} + \frac{1}{2x + 1}}{1 - \frac{x}{x + 1} \times \frac{1}{2x + 1}}\]
\[ = \frac{\frac{x\left( 2x + 1 \right) + x + 1}{\left( x + 1 \right)\left( 2x + 1 \right)}}{\frac{\left( x + 1 \right)\left( 2x + 1 \right) - x}{\left( x + 1 \right)\left( 2x + 1 \right)}}\]
\[ = \frac{2 x^2 + x + x + 1}{2 x^2 + 3x + 1 - x}\]
\[= \frac{2 x^2 + 2x + 1}{2 x^2 + 2x + 1}\]
\[ = 1\]
\[\therefore \tan\left( \alpha + \beta \right) = 1 = \tan\frac{\pi}{4}\]
\[ \Rightarrow \alpha + \beta = \frac{\pi}{4}\]

Hence, the correct answer is option D.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 14 | पृष्ठ २२

संबंधित प्रश्‍न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 47° + cos 77° = cos 17°


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 5A \cos 2A - \sin 6A \cos A}{\sin A \sin 2A - \cos 2A \cos 3A} = \tan A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


cos 35° + cos 85° + cos 155° =


The value of sin 50° − sin 70° + sin 10° is equal to


If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×