हिंदी

If Tan α = X X + 1 and Tan β = 1 2 X + 1 , Then Tan β = 1 2 X + 1 is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

If tanα=xx+1 and 

tanβ=12x+1, then
tanβ=12x+1 is equal to

 

विकल्प

  • π2

     

  • π2

     

  • π2

     

  • π2

     

MCQ
योग

उत्तर

It is given that tanα=xx+1 and tanβ=xx+1 

Now,
tan(α+β)=tanα+tanβ1tanαtanβ
=xx+1+12x+11xx+1×12x+1
=x(2x+1)+x+1(x+1)(2x+1)(x+1)(2x+1)x(x+1)(2x+1)
=2x2+x+x+12x2+3x+1x
=2x2+2x+12x2+2x+1
=1
tan(α+β)=1=tanπ4
α+β=π4

Hence, the correct answer is option D.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.4 | Q 14 | पृष्ठ २२

संबंधित प्रश्न

 Prove that 4cosxcos(π3+x)cos(π3x)=cos3x.

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = 316

 


Prove that:
cos 40° cos 80° cos 160° = 18

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that 
tanxtan(π3x)tan(π3+x)=tan3x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:

cosπ12sinπ12=12

 


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

cos(3π4+x)cos(3π4x)=2sinx

 


Prove that:
sin 47° + cos 77° = cos 17°


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −34

 


Prove that cosxcosx2cos3xcos9x2=sin7xsin8x

Prove that:

cos3A+2cos5A+cos7AcosA+2cos3A+cos5A=cos5Acos3A

Prove that:

sinA+sin3A+sin5AcosA+cos3A+cos5A=tan3A

 


Prove that:

sin3A+sin5A+sin7A+sin9Acos3A+cos5A+cos7A+cos9A=tan6A

Prove that:

sinAsin2A+sin3Asin6AsinAcos2A+sin3Acos6A=tan5A

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If (cos α + cos β)2 + (sin α + sin β)2 = λcos2(αβ2), write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan (A+B2).

 

If cos A = m cos B, then write the value of cotA+B2cotAB2.

 

cos 40° + cos 80° + cos 160° + cos 240° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


The value of sin 50° − sin 70° + sin 10° is equal to


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 (α-β2)


Prove that:

2 cos π13 cos 9π13+cos3π13+cos5π13 = 0


Prove that:

cos7A+cos5Asin7Asin5A = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = 12 and sin A + sin B = 14, prove that tan (A + B2)=12


If tan θ = 15 and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.