Advertisements
Advertisements
प्रश्न
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
उत्तर
LHS = tan 20° tan 40° tan 60° tan 80°
\[= \tan 60^\circ \frac{\sin 20^\circ \sin 40^\circ \sin 80^\circ} {\cos 20^\circ \cos 40^\circ \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ 2\sin 20^\circ \sin 40^\circ \right]\sin 80^\circ }{\frac{1}{2}\left[ 2\cos 20^\circ \cos 40^\circ \right]\cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( 20^\circ - 40^\circ \right) - \cos \left( 20^\circ + 40^\circ \right) \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos\left( 20^\circ - 40^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\left[ \cos \left( - 20^\circ \right) - \cos 60^\circ \right] \sin 80^\circ}{\frac{1}{2}\left[ \cos 60^\circ + \cos\left( - 20^\circ \right) \right] \cos 80^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ\left[ \cos 20^\circ - \frac{1}{2} \right]}{\frac{1}{2}\cos 80^\circ\left[ \frac{1}{2} + \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin 80^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\sin \left( 90^\circ - 10^\circ \right) \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[ = \sqrt{3} \times \frac{\frac{1}{2}\cos 10^\circ \cos 20^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{2}\cos 80^\circ \cos 20^\circ}\]
\[= \sqrt{3} \times \frac{\frac{1}{4}\left[ 2\cos 10^\circ \cos 20^\circ \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ 2\cos 80^\circ \cos 20^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos \left( 10^\circ + 20^\circ \right) + \cos \left( 10^\circ - 20^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 80^\circ + 20^\circ \right) + \cos \left( 80^\circ - 20^\circ \right) \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( - 10^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos 100^\circ + \cos 60^\circ \right]}\]
\[ = \sqrt{3} \times \frac{\frac{1}{4}\left[ \cos 30^\circ + \cos \left( 90^\circ - 80^\circ \right) \right] - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ + \frac{1}{4}\left[ \cos \left( 180^\circ - 80^\circ \right) + \frac{1}{2} \right]}\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8} + \frac{1}{4}\sin 80^\circ - \frac{1}{4}\sin 80^\circ}{\frac{1}{4}\cos 80^\circ - \frac{1}{4}\cos 80^\circ + \frac{1}{8}}\left[ \cos \left( 90^\circ - 80^\circ \right) = \sin 80^\circ, and \cos\left( 180^\circ - 80^\circ \right) = - \cos\left( 80^\circ \right) \right]\]
\[ = \sqrt{3} \times \frac{\frac{\sqrt{3}}{8}}{\frac{1}{8}}\]
\[ = 3 = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.