हिंदी

Prove That: Sin 11 a Sin a + Sin 7 a Sin 3 a Cos 11 a Sin a + Cos 7 a Sin 3 a = Tan 8 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]
योग

उत्तर

Consider LHS: 
\[ \frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 2A \sin A + \cos 6A \sin 3A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 11A \sin A + 2\sin 7A \sin 3A}{2\cos 11A sin A + 2\cos 7A \sin 3A}\]
\[ = \frac{\cos \left( 11A - A \right) - \cos \left( 11A + A \right) + \cos \left( 7A - 3A \right) - \cos \left( 7A + 3A \right)}{\sin \left( 11A + A \right) - \sin \left( 11A - A \right) + \sin \left( 7A + 3A \right) - \sin \left( 7A - 3A \right)}\]
\[ = \frac{\cos 10A - \cos 12A + \cos 4A - \cos 10A}{\sin 12A - \sin 10A + \sin 10A - \sin 4A}\]
\[ = \frac{\cos 4A - \cos 12A}{\sin 12A - \sin 4A}\]
\[ = \frac{- 2\sin \left( \frac{4A + 12A}{2} \right) \sin \left( \frac{4A - 12A}{2} \right)}{2\sin \left( \frac{12A - 4A}{2} \right) \cos \left( \frac{12A + 4A}{2} \right)}\]
\[ = \frac{- \sin 8A \sin \left( - 4A \right)}{\sin 4A \cos 8A}\]
\[ = \frac{\sin 8A \sin 4A}{\sin 4A \cos 8A}\]
\[ = \tan8A\]
 = RHS
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 8.07 | पृष्ठ १८

संबंधित प्रश्न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Express each of the following as the product of sines and cosines:
sin 2x + cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

The value of sin 50° − sin 70° + sin 10° is equal to


Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

sin A + sin 2A


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×