Advertisements
Advertisements
प्रश्न
Prove that:
उत्तर
Consider LHS:
\[ \frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 2A \sin A + \cos 6A \sin 3A}\]
Multiplying numerator and denominator by 2, we get
\[ = \frac{2\sin 11A \sin A + 2\sin 7A \sin 3A}{2\cos 11A sin A + 2\cos 7A \sin 3A}\]
\[ = \frac{\cos \left( 11A - A \right) - \cos \left( 11A + A \right) + \cos \left( 7A - 3A \right) - \cos \left( 7A + 3A \right)}{\sin \left( 11A + A \right) - \sin \left( 11A - A \right) + \sin \left( 7A + 3A \right) - \sin \left( 7A - 3A \right)}\]
\[ = \frac{\cos 10A - \cos 12A + \cos 4A - \cos 10A}{\sin 12A - \sin 10A + \sin 10A - \sin 4A}\]
\[ = \frac{\cos 4A - \cos 12A}{\sin 12A - \sin 4A}\]
\[ = \frac{- 2\sin \left( \frac{4A + 12A}{2} \right) \sin \left( \frac{4A - 12A}{2} \right)}{2\sin \left( \frac{12A - 4A}{2} \right) \cos \left( \frac{12A + 4A}{2} \right)}\]
\[ = \frac{- \sin 8A \sin \left( - 4A \right)}{\sin 4A \cos 8A}\]
\[ = \frac{\sin 8A \sin 4A}{\sin 4A \cos 8A}\]
\[ = \tan8A\]
= RHS
Hence, LHS = RHS.
APPEARS IN
संबंधित प्रश्न
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that:
sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 40° + sin 20° = cos 10°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
The value of sin 50° − sin 70° + sin 10° is equal to
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the product of sine and cosine.
sin A + sin 2A
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: