हिंदी

Show that : Sin 50 ∘ Cos 85 ∘ = 1 − √ 2 Sin 35 ∘ 2 √ 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]
योग

उत्तर

\[\text{ LHS }= 2 \sin50^\circ \cos 85^\circ\]
\[ = \frac{\sin \left( 50^\circ + 85^\circ \right) + \sin \left( 50^\circ - 85^\circ \right)}{2} \left[ \because \sin A \cos B = \frac{1}{2}\left\{ \sin (A + B) + \sin (A - B) \right\} \right]\]
\[ = \frac{\sin 135^\circ + \sin \left( - 35^\circ \right)}{2}\]
\[ = \frac{\sin 135^\circ - \sin 35^\circ}{2}\]
\[ = \frac{\cos 45^\circ - \sin 35^\circ}{2} \left[ \because \sin \left( 90^\circ + 45^\circ \right) = \cos 45^\circ \right]\]
\[ = \frac{1}{2}\left( \frac{1}{\sqrt{2}} - \sin 35^\circ \right)\]
\[ = \frac{1}{2}\left[ \frac{1 - \sqrt{2}\sin 35^\circ}{\sqrt{2}} \right]\]
\[ = \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
\[\text{ RHS }= \frac{1 - \sqrt{2}\sin 35^\circ}{2\sqrt{2}}\]
Hence, LHS = RHS

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 3.1 | पृष्ठ ६

संबंधित प्रश्न

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

\[\frac{\sin A + \sin 3A}{\cos A - \cos 3A} = \cot A\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


sin 163° cos 347° + sin 73° sin 167° =


cos 35° + cos 85° + cos 155° =


sin 47° + sin 61° − sin 11° − sin 25° is equal to


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×