Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ LHS }= 4\cos x \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right)\]
\[ = 2\cos x\left[ 2 \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) \right]\]
\[ = 2\cos x\left[ \cos \left( \frac{\pi}{3} + x + \frac{\pi}{3} - x \right) + \cos \left( \frac{\pi}{3} + x - \frac{\pi}{3} + 2x \right) \right] \left[ \because 2\cos A \cos B = \cos (A + B) + \cos (A - B) \right]\]
\[ = 2\cos x\left[ \cos \frac{2\pi}{3} + \cos 2x \right]\]
\[ = 2\cos x\left[ - \frac{1}{2} + \cos 2x \right]\]
\[ = - \cos x + 2\cos x \cos 2x\]
\[ = - \cos x + \cos \left( x + 2x \right) + \cos \left( x - 2x \right)\]
\[ = - \cos x + \cos 3x + \cos\left( - x \right)\]
\[ = - \cos x + \cos 3x + \cos x\]
\[ = \cos 3x\]
\[\text{ RHS }= \cos 3x\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
cos 12x - cos 4x
Express each of the following as the product of sines and cosines:
sin 2x + cos 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
The value of cos 52° + cos 68° + cos 172° is
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`sin "A"/8 sin (3"A")/8`
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is: