Advertisements
Advertisements
Question
Solution
\[\text{ LHS }= 4\cos x \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right)\]
\[ = 2\cos x\left[ 2 \cos \left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) \right]\]
\[ = 2\cos x\left[ \cos \left( \frac{\pi}{3} + x + \frac{\pi}{3} - x \right) + \cos \left( \frac{\pi}{3} + x - \frac{\pi}{3} + 2x \right) \right] \left[ \because 2\cos A \cos B = \cos (A + B) + \cos (A - B) \right]\]
\[ = 2\cos x\left[ \cos \frac{2\pi}{3} + \cos 2x \right]\]
\[ = 2\cos x\left[ - \frac{1}{2} + \cos 2x \right]\]
\[ = - \cos x + 2\cos x \cos 2x\]
\[ = - \cos x + \cos \left( x + 2x \right) + \cos \left( x - 2x \right)\]
\[ = - \cos x + \cos 3x + \cos\left( - x \right)\]
\[ = - \cos x + \cos 3x + \cos x\]
\[ = \cos 3x\]
\[\text{ RHS }= \cos 3x\]
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
`sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
cos 40° + cos 80° + cos 160° + cos 240° =
sin 163° cos 347° + sin 73° sin 167° =
If sin α + sin β = a and cos α − cos β = b, then tan \[\frac{\alpha - \beta}{2}\]=
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.