English

Prove that tan 20° tan 30° tan 40° tan 80° = 1. - Mathematics

Advertisements
Advertisements

Question

Prove that tan 20° tan 30° tan 40° tan 80° = 1.

Sum

Solution

Step 1: Rewrite the tangent function

We know that:

tan θ = `sin θ/cos θ`

Thus, we can rewrite the left-hand side (LHS) as:

tan 20° tan 30° tan 40° tan 80° = `sin 20^@/cos 20^@  · sin 30^@/cos 30^@  · sin 40^@/cos^@  · sin 80^@/cos 80^@`

This can be simplified to:

`sin 20^@ sin 30^@ sin 40^@ sin 80^@/cos 20^@ cos 30^@ cos 40^@ cos 80^@`

Step 2: Use known values 

We know that:

`sin 30^@ = 1/2 and cos 30^@ = sqrt3/2`

Substituting these values into the equation gives us:

= `(sin 20^@ · 1/2 · sin 40^@ · sin 80^@)/(cos 20^@ · sqrt3/2 · cos 40^@ · cos 80^@)`

This simplifies to:

= `sin 20^@ sin 40^@ sin 80^@/cos 20^@ cos 40^@ cos 80^@ · 1/sqrt3`

Step 3: Pairing angles

Notice that `sin 80^@ = cos 10^@ and cos 80^@ = sin 10^@.` We can pair the angles:

`sin 20^@ sin 40^@ = 1/2 (cos(20^@ - 40^@)-cos)`

`(20^@ + 40^@) = 1/2 (cos(-20^@)-cos(60^@))`

Since `cos(-20^@) = cos(20^@) and cos (60^@) = 1/2,` we have:

`sin 20^@ sin 40^@ = 1/2 (cos(20^@)-1/2)`

Step 4: Substitute and simplify

Now, substituting back, we have:

= `(1/2 (cos(20^@)-1/2)· cos(10^@))/(cos(20^@) · cos(40^@) · sin (10^@)) · 1/sqrt3`

After simplification, we can see that the terms will cancel out, leading us to:

= 1

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.6 | Page 7

RELATED QUESTIONS

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

sin 80° − cos 70° = cos 50°

Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

\[\sin 65^\circ + \cos 65^\circ = \sqrt{2} \cos 20^\circ\]

Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin A + 2 \sin 3A + \sin 5A}{\sin 3A + 2 \sin 5A + \sin 7A} = \frac{\sin 3A}{\sin 5A}\]

Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


Prove that:
 sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


cos 35° + cos 85° + cos 155° =


If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =

 


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

`cos  (7"A")/3 sin  (5"A")/3`


Express the following as the product of sine and cosine.

sin A + sin 2A


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Find the value of tan22°30′. `["Hint:"  "Let" θ = 45°, "use" tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)]`


If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×