Advertisements
Advertisements
Question
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Solution
Step 1: Rewrite the tangent function
We know that:
tan θ = `sin θ/cos θ`
Thus, we can rewrite the left-hand side (LHS) as:
tan 20° tan 30° tan 40° tan 80° = `sin 20^@/cos 20^@ · sin 30^@/cos 30^@ · sin 40^@/cos^@ · sin 80^@/cos 80^@`
This can be simplified to:
`sin 20^@ sin 30^@ sin 40^@ sin 80^@/cos 20^@ cos 30^@ cos 40^@ cos 80^@`
Step 2: Use known values
We know that:
`sin 30^@ = 1/2 and cos 30^@ = sqrt3/2`
Substituting these values into the equation gives us:
= `(sin 20^@ · 1/2 · sin 40^@ · sin 80^@)/(cos 20^@ · sqrt3/2 · cos 40^@ · cos 80^@)`
This simplifies to:
= `sin 20^@ sin 40^@ sin 80^@/cos 20^@ cos 40^@ cos 80^@ · 1/sqrt3`
Step 3: Pairing angles
Notice that `sin 80^@ = cos 10^@ and cos 80^@ = sin 10^@.` We can pair the angles:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@ - 40^@)-cos)`
`(20^@ + 40^@) = 1/2 (cos(-20^@)-cos(60^@))`
Since `cos(-20^@) = cos(20^@) and cos (60^@) = 1/2,` we have:
`sin 20^@ sin 40^@ = 1/2 (cos(20^@)-1/2)`
Step 4: Substitute and simplify
Now, substituting back, we have:
= `(1/2 (cos(20^@)-1/2)· cos(10^@))/(cos(20^@) · cos(40^@) · sin (10^@)) · 1/sqrt3`
After simplification, we can see that the terms will cancel out, leading us to:
= 1
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
cos 35° + cos 85° + cos 155° =
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
Find the value of tan22°30′. `["Hint:" "Let" θ = 45°, "use" tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)]`
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.