English

Prove That:Sin 10° Sin 50° Sin 60° Sin 70° = \[\Frac{\Sqrt{3}}{16}\] - Mathematics

Advertisements
Advertisements

Question

Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 

Sum

Solution

\[LHS = \sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ\]
\[ = \frac{1}{2}\sin 60^\circ \left[ 2\sin 10^\circ \sin 50^\circ \right]\sin 70^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 10^\circ - 50^\circ \right) - \cos \left( 10^\circ + 50^\circ \right) \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos \left( - 40^\circ \right) - \frac{1}{2} \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ\left[ \cos 40^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 20^\circ \right) \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 20^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 20^\circ\cos 40^\circ \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos \left( 20^\circ - 40^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( 90^\circ - 70^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8}\sin 70^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ \left[ \because \cos \left( 90^\circ - 70^\circ \right) = \sin 70^\circ \right]\]
\[ = \frac{\sqrt{3}}{16} = RHS\]

shaalaa.com
Transformation Formulae
  Is there an error in this question or solution?
Chapter 8: Transformation formulae - Exercise 8.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 8 Transformation formulae
Exercise 8.1 | Q 5.7 | Page 7

RELATED QUESTIONS

Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Prove that:
sin 38° + sin 22° = sin 82°


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
 cos 55° + cos 65° + cos 175° = 0


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]

 


Prove that \[\cos x \cos \frac{x}{2} - \cos 3x \cos\frac{9x}{2} = \sin 7x \sin 8x\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


sin 163° cos 347° + sin 73° sin 167° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


sin 47° + sin 61° − sin 11° − sin 25° is equal to


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×