Advertisements
Advertisements
Question
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Solution
\[LHS = \sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ\]
\[ = \frac{1}{2}\sin 60^\circ \left[ 2\sin 10^\circ \sin 50^\circ \right]\sin 70^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 10^\circ - 50^\circ \right) - \cos \left( 10^\circ + 50^\circ \right) \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos \left( - 40^\circ \right) - \frac{1}{2} \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ\left[ \cos 40^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 20^\circ \right) \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 20^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 20^\circ\cos 40^\circ \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos \left( 20^\circ - 40^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( 90^\circ - 70^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8}\sin 70^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ \left[ \because \cos \left( 90^\circ - 70^\circ \right) = \sin 70^\circ \right]\]
\[ = \frac{\sqrt{3}}{16} = RHS\]
APPEARS IN
RELATED QUESTIONS
Prove that:
cos 40° cos 80° cos 160° = \[- \frac{1}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
sin 50° + sin 10° = cos 20°
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
sin 163° cos 347° + sin 73° sin 167° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
sin 47° + sin 61° − sin 11° − sin 25° is equal to
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
2 cos `pi/13` cos \[\frac{9\pi}{13} + \text{cos} \frac{3\pi}{13} + \text{cos} \frac{5\pi}{13}\] = 0
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A