Advertisements
Advertisements
प्रश्न
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
उत्तर
\[LHS = \sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ\]
\[ = \frac{1}{2}\sin 60^\circ \left[ 2\sin 10^\circ \sin 50^\circ \right]\sin 70^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 10^\circ - 50^\circ \right) - \cos \left( 10^\circ + 50^\circ \right) \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos \left( - 40^\circ \right) - \frac{1}{2} \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ\left[ \cos 40^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 20^\circ \right) \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 20^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 20^\circ\cos 40^\circ \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos \left( 20^\circ - 40^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( 90^\circ - 70^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8}\sin 70^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ \left[ \because \cos \left( 90^\circ - 70^\circ \right) = \sin 70^\circ \right]\]
\[ = \frac{\sqrt{3}}{16} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
tan 20° tan 40° tan 60° tan 80° = 3
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Prove that:
sin 50° − sin 70° + sin 10° = 0
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]
sin 163° cos 347° + sin 73° sin 167° =
The value of cos 52° + cos 68° + cos 172° is
The value of sin 50° − sin 70° + sin 10° is equal to
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
Evaluate-
cos 20° + cos 100° + cos 140°
Evaluate:
sin 50° – sin 70° + sin 10°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.