हिंदी

Prove That:Sin 10° Sin 50° Sin 60° Sin 70° = \[\Frac{\Sqrt{3}}{16}\] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 

योग

उत्तर

\[LHS = \sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ\]
\[ = \frac{1}{2}\sin 60^\circ \left[ 2\sin 10^\circ \sin 50^\circ \right]\sin 70^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 10^\circ - 50^\circ \right) - \cos \left( 10^\circ + 50^\circ \right) \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos \left( - 40^\circ \right) - \frac{1}{2} \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ\left[ \cos 40^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 20^\circ \right) \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 20^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 20^\circ\cos 40^\circ \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos \left( 20^\circ - 40^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( 90^\circ - 70^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8}\sin 70^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ \left[ \because \cos \left( 90^\circ - 70^\circ \right) = \sin 70^\circ \right]\]
\[ = \frac{\sqrt{3}}{16} = RHS\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.1 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.1 | Q 5.7 | पृष्ठ ७

संबंधित प्रश्न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:

\[\cos\left( \frac{3\pi}{4} + x \right) - \cos\left( \frac{3\pi}{4} - x \right) = - \sqrt{2} \sin x\]

 


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


sin 163° cos 347° + sin 73° sin 167° =


The value of cos 52° + cos 68° + cos 172° is


The value of sin 50° − sin 70° + sin 10° is equal to


If \[\tan\alpha = \frac{x}{x + 1}\] and 

\[\tan\beta = \frac{1}{2x + 1}\], then
\[\tan\beta = \frac{1}{2x + 1}\] is equal to

 


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×