Advertisements
Advertisements
प्रश्न
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
उत्तर
\[LHS = \sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ\]
\[ = \frac{1}{2}\sin 60^\circ \left[ 2\sin 10^\circ \sin 50^\circ \right]\sin 70^\circ\]
\[ = \frac{1}{2} \times \frac{\sqrt{3}}{2}\left[ \cos \left( 10^\circ - 50^\circ \right) - \cos \left( 10^\circ + 50^\circ \right) \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\left[ \cos \left( - 40^\circ \right) - \frac{1}{2} \right]\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ\left[ \cos 40^\circ - \frac{1}{2} \right]\]
\[ = \frac{\sqrt{3}}{4}\sin 70^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\sin \left( 90^\circ - 20^\circ \right) \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{4}\cos 20^\circ \cos 40^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[= \frac{\sqrt{3}}{8}\left[ 2\cos 20^\circ\cos 40^\circ \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos \left( 20^\circ + 40^\circ \right) + \cos \left( 20^\circ - 40^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( - 20^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{8}\left[ \cos 60^\circ + \cos \left( 90^\circ - 70^\circ \right) \right] - \frac{\sqrt{3}}{8}\sin 70^\circ\]
\[ = \frac{\sqrt{3}}{16} + \frac{\sqrt{3}}{8}\sin 70^\circ - \frac{\sqrt{3}}{8}\sin 70^\circ \left[ \because \cos \left( 90^\circ - 70^\circ \right) = \sin 70^\circ \right]\]
\[ = \frac{\sqrt{3}}{16} = RHS\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]
Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
sin 105° + cos 105° = cos 45°
Prove that:
cos 20° + cos 100° + cos 140° = 0
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
cos (A + B + C) + cos (A − B + C) + cos (A + B − C) + cos (− A + B + C) = 4 cos A cos Bcos C
If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.
cos 40° + cos 80° + cos 160° + cos 240° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If sin x + sin y = \[\sqrt{3}\] (cos y − cos x), then sin 3x + sin 3y =
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos(60° + A) sin(120° + A)
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.
If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.