Advertisements
Advertisements
प्रश्न
Express the following as the product of sine and cosine.
cos 2θ – cos θ
उत्तर
cos 2θ – cos θ
`= - 2 sin ((2theta + theta)/2) sin ((2theta - theta)/2)` ...`[∵ cos "C" - cos "D" = - 2 sin (("C + D")/2) cos (("C - D")/2)]`
= - 2 sin `((3theta)/2) sin ((theta)/2)`
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
The value of cos 52° + cos 68° + cos 172° is
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
Prove that:
cos 20° cos 40° cos 80° = `1/8`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.