मराठी

If Sin (B + C − A), Sin (C + a − B), Sin (A + B − C) Are in A.P., Then Cot A, Cot B and Cot C Are in - Mathematics

Advertisements
Advertisements

प्रश्न

If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in

पर्याय

  • GP

  • HP

  • AP

  • None of these

MCQ
बेरीज

उत्तर

HP
Given:
sin (B + C − A), sin (C + A − B) and sin (A + B − C) are in A.P.
\[\Rightarrow \sin\left( C + A - B \right) - \sin\left( B + C - A \right) = \sin\left( A + B - C \right) - \sin\left( C + A - B \right)\]
\[ \Rightarrow 2\sin\left( \frac{C + A - B - B - C + A}{2} \right) \cos\left( \frac{C + A - B + B + C - A}{2} \right) = 2\sin\left( \frac{A + B - C - C - A + B}{2} \right) \cos\left( \frac{A + B - C + C + A - B}{2} \right)\]
\[ \Rightarrow \sin\left( A - B \right) \cos C = \sin\left( B - C \right) \cos A\]
\[ \Rightarrow \sin A \cos B \cos C - \cos A \sin B \cos C = \sin B \cos C\cos A - \cos B \sin C \cos A\]
\[ \Rightarrow 2\sin B \cos A \cos C = \sin A \cos B \cos C + \cos A \cos B \sin C\] 
Dividing both sides by cosA cosB cosC:
\[2\tan B = \tan A + \tan C \]
\[ \Rightarrow \frac{2}{cotB} = \frac{1}{cotA} + \frac{1}{cotC}\]

Hence, cotA, cotB and cotC are in HP.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.4 | Q 12 | पृष्ठ २२

संबंधित प्रश्‍न

Prove that:

\[2\sin\frac{5\pi}{12}\sin\frac{\pi}{12} = \frac{1}{2}\]

 


Show that :

\[\sin 25^\circ \cos 115^\circ = \frac{1}{2}\left( \sin 140^\circ - 1 \right)\]

Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
 sin 20° sin 40° sin 60° sin 80° = \[\frac{3}{16}\]

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x + cos 8x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
 sin 23° + sin 37° = cos 7°


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that: 
cos A + cos 3A + cos 5A + cos 7A = 4 cos A cos 2A cos 4A


Prove that:
 `sin A + sin 2A + sin 4A + sin 5A = 4 cos (A/2) cos((3A)/2)sin3A`


Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\sin \alpha + \sin \beta + \sin \gamma - \sin (\alpha + \beta + \gamma) = 4 \sin \left( \frac{\alpha + \beta}{2} \right) \sin \left( \frac{\beta + \gamma}{2} \right) \sin \left( \frac{\gamma + \alpha}{2} \right)\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]


Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]


Write the value of \[\frac{\sin A + \sin 3A}{\cos A + \cos 3A}\]


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), then write the value of tan A tan B tan C.


cos 40° + cos 80° + cos 160° + cos 240° =


cos 35° + cos 85° + cos 155° =


If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=

 

Express the following as the sum or difference of sine or cosine:

`sin  "A"/8  sin  (3"A")/8`


Express the following as the product of sine and cosine.

sin A + sin 2A


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×