मराठी

Prove That: Sin 5 π 18 − Cos 4 π 9 = √ 3 Sin π 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]

बेरीज

उत्तर

\[LHS = \sin\left( \frac{5\pi}{18} \right) - \cos\frac{4\pi}{9}\]
\[ = \sin\left( \frac{5\pi}{18} \right) - \cos\left( \frac{\pi}{2} - \frac{\pi}{18} \right)\]
\[ = \sin\left( \frac{5\pi}{18} \right) - \sin\left( \frac{\pi}{18} \right)\]
\[ = 2\sin\left( \frac{\frac{5\pi}{18} - \frac{\pi}{18}}{2} \right)\cos\left( \frac{\frac{5\pi}{18} + \frac{\pi}{18}}{2} \right) \left[ \because \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ = 2\sin\left( \frac{\pi}{9} \right)\cos\frac{\pi}{6}\]
\[ = 2\sin\left( \frac{\pi}{9} \right)\cos\frac{\pi}{6}\]
\[ = 2 \times \frac{\sqrt{3}}{2}\sin\left( \frac{\pi}{9} \right)\]
\[ = \sqrt{3}\sin\left( \frac{\pi}{9} \right) = RHS\]
Hence, LHS = RHS.

shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 3.5 | पृष्ठ १७

संबंधित प्रश्‍न

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
tan 20° tan 40° tan 60° tan 80° = 3

 


Prove that tan 20° tan 30° tan 40° tan 80° = 1.


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:

\[\cos\left( \frac{\pi}{4} + x \right) + \cos\left( \frac{\pi}{4} - x \right) = \sqrt{2} \cos x\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\cos 3A + 2 \cos 5A + \cos 7A}{\cos A + 2 \cos 3A + \cos 5A} = \frac{\cos 5A}{\cos 3A}\]

Prove that:

\[\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A\]

Prove that:

\[\frac{\sin 5A - \sin 7A + \sin 8A - \sin 4A}{\cos 4A + \cos 7A - \cos 5A - \cos 8A} = \cot 6A\]

If cosec A + sec A = cosec B + sec B, prove that tan A tan B = \[\cot\frac{A + B}{2}\].


\[\text{ If }\frac{\cos (A - B)}{\cos (A + B)} + \frac{\cos (C + D)}{\cos (C - D)} = 0, \text {Prove that }\tan A \tan B \tan C \tan D = - 1\]

 


If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].

 

cos 40° + cos 80° + cos 160° + cos 240° =


Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the sum or difference of sine or cosine:

cos 7θ sin 3θ


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Prove that:

tan 20° tan 40° tan 80° = `sqrt3`.


Prove that:

sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


Evaluate:

sin 50° – sin 70° + sin 10°


If tan θ = `1/sqrt5` and θ lies in the first quadrant then cos θ is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×