मराठी

If Cos (α + β) Sin (γ + δ) = Cos (α − β) Sin (γ − δ), Prove that Cot α Cot β Cot γ = Cot δ - Mathematics

Advertisements
Advertisements

प्रश्न

If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ

 
बेरीज

उत्तर

\[\cos \left( \alpha + \beta \right) \sin \left( \gamma + \delta \right) = \cos \left( \alpha - \beta \right) \sin \left( \gamma - \delta \right)\]

\[ \Rightarrow \left[ \cos \alpha\cos \beta - \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta + \cos \gamma \sin \delta \right] = \left[ \cos \alpha \cos \beta + \sin \alpha \sin \beta \right]\left[ \sin \gamma \cos \delta - \cos \gamma \sin \delta \right]\]

\[\text{ Dividing both sides by }\sin \alpha \sin \beta \sin \gamma \sin \delta: \]
\[\frac{\left[ \cos\alpha \cos\beta - \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \alpha \sin \beta \sin \gamma \sin \delta}\]
\[ \Rightarrow \frac{\left[ \cos\alpha \cos\beta - \sin\alpha\sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta + \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta} = \frac{\left[ \cos\alpha \cos\beta + \sin\alpha \sin\beta \right]}{\sin \alpha \sin \beta} \times \frac{\left[ \sin\gamma \cos\delta - \cos\gamma \sin\delta \right]}{\sin \gamma \sin \delta}\]
\[ \Rightarrow \left[ \cot\alpha \cot\beta - 1 \right]\left[ \cot\delta + \cot\gamma \right] = \left[ \cot\alpha \cot\beta + 1 \right]\left[ \cot\delta - \cot\gamma \right]\]
\[ \Rightarrow \cot\alpha \cot\beta cot\delta + \cot\alpha \cot\beta cot\gamma - cot\delta - cot\gamma = \cot\alpha \cot\beta cot\delta - \cot\alpha \cot\beta cot\gamma + cot\delta - cot\gamma \]
\[ \Rightarrow - \cot\delta - \cot\delta = - \cot\alpha \cot\beta \cot\gamma - \cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow - 2\cot\delta = - 2\cot\alpha \cot\beta \cot\gamma\]
\[ \Rightarrow \cot\alpha \cot\beta \cot\gamma = \cot\delta\]
Hence proved.
shaalaa.com
Transformation Formulae
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 8 Transformation formulae
Exercise 8.2 | Q 15 | पृष्ठ १९

संबंधित प्रश्‍न

Prove that:

\[2\cos\frac{5\pi}{12}\cos\frac{\pi}{12} = \frac{1}{2}\]

Show that :

\[\sin 50^\circ \cos 85^\circ = \frac{1 - \sqrt{2} \sin 35^\circ}{2\sqrt{2}}\]

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]

 


Prove that:
 sin 20° sin 40° sin 80° = \[\frac{\sqrt{3}}{8}\]

 


Prove that:
cos 20° cos 40° cos 80° = \[\frac{1}{8}\]

 


Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


Express each of the following as the product of sines and cosines:
sin 5x − sin x


Express each of the following as the product of sines and cosines:
 cos 12x - cos 4x


Prove that:
sin 50° + sin 10° = cos 20°


Prove that:
sin 105° + cos 105° = cos 45°


Prove that:
sin 40° + sin 20° = cos 10°


Prove that:
 sin 50° − sin 70° + sin 10° = 0



Prove that:
cos 20° + cos 100° + cos 140° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:
cos 3A + cos 5A + cos 7A + cos 15A = 4 cos 4A cos 5A cos 6A


Prove that:

\[\frac{\sin 9A - \sin 7A}{\cos 7A - \cos 9A} = \cot 8A\]

Prove that:

\[\frac{\sin A - \sin B}{\cos A + \cos B} = \tan\frac{A - B}{2}\]

Prove that:

\[\frac{\sin A + \sin B}{\sin A - \sin B} = \tan \left( \frac{A + B}{2} \right) \cot \left( \frac{A - B}{2} \right)\]

Prove that:

\[\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A\]

 


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

\[\text{ If } \cos A + \cos B = \frac{1}{2}\text{ and }\sin A + \sin B = \frac{1}{4},\text{ prove that }\tan\left( \frac{A + B}{2} \right) = \frac{1}{2} .\]

 


If cos (A + B) sin (C − D) = cos (A − B) sin (C + D), prove that tan A tan B tan C + tan D = 0.

 

If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]


If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =

 

 


cos 35° + cos 85° + cos 155° =


If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=

 

Express the following as the sum or difference of sine or cosine:

cos(60° + A) sin(120° + A)


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Prove that:

cos 20° cos 40° cos 80° = `1/8`


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


If sin(y + z – x), sin(z + x – y), sin(x + y – z) are in A.P, then prove that tan x, tan y and tan z are in A.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×