Advertisements
Advertisements
प्रश्न
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
उत्तर
Given:
y sin ϕ = x sin (2θ + ϕ)
\[\Rightarrow \frac{y}{x} = \frac{\sin\left( 2\theta + \phi \right)}{\sin\phi}\]
Applying componendo and dividendo:
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin\left( 2\theta + \phi \right) - \sin\phi}{\sin\left( 2\theta + \phi \right) + \sin\phi}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin\left( \frac{2\theta + \phi - \phi}{2} \right)\cos\left( \frac{2\theta + \phi + \phi}{2} \right)}{2\sin\left( \frac{2\theta + \phi + \phi}{2} \right)\cos\left( \frac{2\theta + \phi - \phi}{2} \right)}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin \theta \cos\left( \theta + \phi \right)}{2\sin\left( \theta + \phi \right) \cos \theta}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin \theta \cos\left( \theta + \phi \right)}{\sin\left( \theta + \phi \right) \cos \theta}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\cot \left( \theta + \phi \right)}{\cot \theta}\]
\[ \Rightarrow \left( y - x \right) cot\theta = \left( y + x \right) cot\left( \theta + \phi \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that:
Prove that:
Prove that:
cos 10° cos 30° cos 50° cos 70° = \[\frac{3}{16}\]
Prove that:
sin 10° sin 50° sin 60° sin 70° = \[\frac{\sqrt{3}}{16}\]
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
sin 23° + sin 37° = cos 7°
Prove that:
cos 55° + cos 65° + cos 175° = 0
Prove that:
Prove that:
Prove that:
sin 3A + sin 2A − sin A = 4 sin A cos \[\frac{A}{2}\] \[\frac{3A}{2}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
If cos (α + β) sin (γ + δ) = cos (α − β) sin (γ − δ), prove that cot α cot β cot γ = cot δ
If \[m \sin\theta = n \sin\left( \theta + 2\alpha \right)\], prove that \[\tan\left( \theta + \alpha \right) \cot\alpha = \frac{m + n}{m - n}\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
If sin A + sin B = α and cos A + cos B = β, then write the value of tan \[\left( \frac{A + B}{2} \right)\].
Write the value of the expression \[\frac{1 - 4 \sin 10^\circ \sin 70^\circ}{2 \sin 10^\circ}\]
If sin 2A = λ sin 2B, then write the value of \[\frac{\lambda + 1}{\lambda - 1}\]
sin 163° cos 347° + sin 73° sin 167° =
If sin 2 θ + sin 2 ϕ = \[\frac{1}{2}\] and cos 2 θ + cos 2 ϕ = \[\frac{3}{2}\], then cos2 (θ − ϕ) =
cos 35° + cos 85° + cos 155° =
The value of sin 50° − sin 70° + sin 10° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
cos 7θ sin 3θ
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Evaluate:
sin 50° – sin 70° + sin 10°