हिंदी

If Y Sin ϕ = X Sin (2θ + ϕ), Prove that (X + Y) Cot (θ + ϕ) = (Y − X) Cot θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.

 
योग

उत्तर

Given:
y sin ϕ = x sin (2θ + ϕ)

\[\Rightarrow \frac{y}{x} = \frac{\sin\left( 2\theta + \phi \right)}{\sin\phi}\]

Applying componendo and dividendo: 

\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin\left( 2\theta + \phi \right) - \sin\phi}{\sin\left( 2\theta + \phi \right) + \sin\phi}\]

\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin\left( \frac{2\theta + \phi - \phi}{2} \right)\cos\left( \frac{2\theta + \phi + \phi}{2} \right)}{2\sin\left( \frac{2\theta + \phi + \phi}{2} \right)\cos\left( \frac{2\theta + \phi - \phi}{2} \right)}\]

\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin \theta \cos\left( \theta + \phi \right)}{2\sin\left( \theta + \phi \right) \cos \theta}\]

\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin \theta \cos\left( \theta + \phi \right)}{\sin\left( \theta + \phi \right) \cos \theta}\]

\[ \Rightarrow \frac{y - x}{y + x} = \frac{\cot \left( \theta + \phi \right)}{\cot \theta}\]

\[ \Rightarrow \left( y - x \right) cot\theta = \left( y + x \right) cot\left( \theta + \phi \right)\]

shaalaa.com
Transformation Formulae
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Transformation formulae - Exercise 8.2 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 8 Transformation formulae
Exercise 8.2 | Q 16 | पृष्ठ १९

संबंधित प्रश्न

\[\text{ Prove that }4 \cos x \cos\left( \frac{\pi}{3} + x \right) \cos \left( \frac{\pi}{3} - x \right) = \cos 3x .\]

 


Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0


Prove that 
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]


If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].

 

 


Express each of the following as the product of sines and cosines:
sin 12x + sin 4x


Prove that:
 cos 100° + cos 20° = cos 40°


Prove that:
 cos 80° + cos 40° − cos 20° = 0


Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]


Prove that:

\[\cos\frac{\pi}{12} - \sin\frac{\pi}{12} = \frac{1}{\sqrt{2}}\]

 


Prove that:

sin 51° + cos 81° = cos 21°

Prove that:

cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]

 


Prove that:
\[\sin\frac{x}{2}\sin\frac{7x}{2} + \sin\frac{3x}{2}\sin\frac{11x}{2} = \sin 2x \sin 5x .\]

 


Prove that:

\[\frac{\cos 4A + \cos 3A + \cos 2A}{\sin 4A + \sin 3A + \sin 2A} = \cot 3A\]

 


Prove that:

\[\frac{\sin 11A \sin A + \sin 7A \sin 3A}{\cos 11A \sin A + \cos 7A \sin 3A} = \tan 8A\]

Prove that:

\[\frac{\sin A \sin 2A + \sin 3A \sin 6A}{\sin A \cos 2A + \sin 3A \cos 6A} = \tan 5A\]

Prove that:

\[\frac{\sin \left( \theta + \phi \right) - 2 \sin \theta + \sin \left( \theta - \phi \right)}{\cos \left( \theta + \phi \right) - 2 \cos \theta + \cos \left( \theta - \phi \right)} = \tan \theta\]

\[\text{ If }\sin 2A = \lambda \sin 2B, \text{ prove that }\frac{\tan (A + B)}{\tan (A - B)} = \frac{\lambda + 1}{\lambda - 1}\]

 


Prove that:

\[\frac{\cos (A + B + C) + \cos ( - A + B + C) + \cos (A - B + C) + \cos (A + B - C)}{\sin (A + B + C) + \sin ( - A + B + C) + \sin (A - B + C) - \sin (A + B - C)} = \cot C\]

If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]

 

 


If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ. 


Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].


If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].

 

If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].

 

 


cos 40° + cos 80° + cos 160° + cos 240° =


The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.


Express the following as the product of sine and cosine.

cos 2A + cos 4A


Express the following as the product of sine and cosine.

sin 6θ – sin 2θ


Express the following as the product of sine and cosine.

cos 2θ – cos θ


Prove that:

(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`


Prove that:

sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0


Prove that:

`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan  "A"/2`


Prove that:

`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A


Evaluate-

cos 20° + cos 100° + cos 140°


If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×