Advertisements
Advertisements
प्रश्न
If y sin ϕ = x sin (2θ + ϕ), prove that (x + y) cot (θ + ϕ) = (y − x) cot θ.
उत्तर
Given:
y sin ϕ = x sin (2θ + ϕ)
\[\Rightarrow \frac{y}{x} = \frac{\sin\left( 2\theta + \phi \right)}{\sin\phi}\]
Applying componendo and dividendo:
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin\left( 2\theta + \phi \right) - \sin\phi}{\sin\left( 2\theta + \phi \right) + \sin\phi}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin\left( \frac{2\theta + \phi - \phi}{2} \right)\cos\left( \frac{2\theta + \phi + \phi}{2} \right)}{2\sin\left( \frac{2\theta + \phi + \phi}{2} \right)\cos\left( \frac{2\theta + \phi - \phi}{2} \right)}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{2\sin \theta \cos\left( \theta + \phi \right)}{2\sin\left( \theta + \phi \right) \cos \theta}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\sin \theta \cos\left( \theta + \phi \right)}{\sin\left( \theta + \phi \right) \cos \theta}\]
\[ \Rightarrow \frac{y - x}{y + x} = \frac{\cot \left( \theta + \phi \right)}{\cot \theta}\]
\[ \Rightarrow \left( y - x \right) cot\theta = \left( y + x \right) cot\left( \theta + \phi \right)\]
APPEARS IN
संबंधित प्रश्न
Show that:
sin A sin (B − C) + sin B sin (C − A) + sin C sin (A − B) = 0
Prove that
\[\tan x \tan \left( \frac{\pi}{3} - x \right) \tan \left( \frac{\pi}{3} + x \right) = \tan 3x\]
If α + β = \[\frac{\pi}{2}\], show that the maximum value of cos α cos β is \[\frac{1}{2}\].
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Prove that:
cos 100° + cos 20° = cos 40°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
\[\sin\frac{5\pi}{18} - \cos\frac{4\pi}{9} = \sqrt{3} \sin\frac{\pi}{9}\]
Prove that:
Prove that:
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of sin \[\frac{\pi}{12}\] sin \[\frac{5\pi}{12}\].
If cos A = m cos B, then write the value of \[\cot\frac{A + B}{2} \cot\frac{A - B}{2}\].
If A + B = \[\frac{\pi}{3}\] and cos A + cos B = 1, then find the value of cos \[\frac{A - B}{2}\].
cos 40° + cos 80° + cos 160° + cos 240° =
The value of sin 78° − sin 66° − sin 42° + sin 60° is ______.
Express the following as the product of sine and cosine.
cos 2A + cos 4A
Express the following as the product of sine and cosine.
sin 6θ – sin 2θ
Express the following as the product of sine and cosine.
cos 2θ – cos θ
Prove that:
(cos α – cos β)2 + (sin α – sin β)2 = 4 sin2 `((alpha - beta)/2)`
Prove that:
sin (A – B) sin C + sin (B – C) sin A + sin(C – A) sin B = 0
Prove that:
`(cos 2"A" - cos 3"A")/(sin "2A" + sin "3A") = tan "A"/2`
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Evaluate-
cos 20° + cos 100° + cos 140°
If cos A + cos B = `1/2` and sin A + sin B = `1/4`, prove that tan `(("A + B")/2) = 1/2`