Advertisements
Advertisements
प्रश्न
Prove that:
cos 20° cos 100° + cos 100° cos 140° − 140° cos 200° = −\[\frac{3}{4}\]
उत्तर
Consider LHS:
\[ \cos 20^\circ \cos 100^\circ + \cos 100^\circ \cos 140^\circ - \cos 140^\circ \cos 200^\circ\]
\[ = \frac{1}{2}(2\cos 20^\circ \cos 100^\circ + 2\cos 100^\circ \cos 140^\circ - 2\cos 140^\circ \cos 200^\circ)\]
\[ = \frac{1}{2}\left[ \cos\left( 100^\circ + 20^\circ \right)\cos \left( 100^\circ - 20^\circ \right) + \cos \left( 140^\circ + 100^\circ \right)\cos \left( 140^\circ - 100^\circ \right) - \cos \left( 200^\circ + 140^\circ \right)\cos \left( 200^\circ - 140^\circ \right) \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos80^\circ + \cos240^\circ + \cos40^\circ - \cos340^\circ - \cos60^\circ \right]\]
\[ = \frac{1}{2}\left[ \cos120^\circ + \cos240^\circ - \cos60^\circ + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ \left( - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \right) + \cos80^\circ + \cos40^\circ - \cos340^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos\left( \frac{80^\circ + 40^\circ}{2} \right)\cos\left( \frac{80^\circ - 40^\circ}{2} \right) - \cos\left( 360^\circ - 20^\circ \right) \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \left\{ 2\cos60^\circ\cos20^\circ - \cos20^\circ \right\} \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} + \cos20^\circ - \cos20^\circ \right]\]
\[ = \frac{1}{2}\left[ - \frac{3}{2} \right]\]
\[ = - \frac{3}{4} = RHS\]
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that:
Show that :
Show that :
Prove that tan 20° tan 30° tan 40° tan 80° = 1.
Show that:
sin (B − C) cos (A − D) + sin (C − A) cos (B − D) + sin (A − B) cos (C − D) = 0
Express each of the following as the product of sines and cosines:
sin 12x + sin 4x
Express each of the following as the product of sines and cosines:
sin 5x − sin x
Express each of the following as the product of sines and cosines:
cos 12x + cos 8x
Prove that:
sin 38° + sin 22° = sin 82°
Prove that:
cos 80° + cos 40° − cos 20° = 0
Prove that:
Prove that:
sin 47° + cos 77° = cos 17°
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
Prove that:
If \[x \cos\theta = y \cos\left( \theta + \frac{2\pi}{3} \right) = z \cos\left( \theta + \frac{4\pi}{3} \right)\], prove that \[xy + yz + zx = 0\]
If (cos α + cos β)2 + (sin α + sin β)2 = \[\lambda \cos^2 \left( \frac{\alpha - \beta}{2} \right)\], write the value of λ.
Write the value of \[\sin\frac{\pi}{15}\sin\frac{4\pi}{15}\sin\frac{3\pi}{10}\]
The value of cos 52° + cos 68° + cos 172° is
cos 35° + cos 85° + cos 155° =
sin 47° + sin 61° − sin 11° − sin 25° is equal to
If cos A = m cos B, then \[\cot\frac{A + B}{2} \cot\frac{B - A}{2}\]=
If A, B, C are in A.P., then \[\frac{\sin A - \sin C}{\cos C - \cos A}\]=
If sin (B + C − A), sin (C + A − B), sin (A + B − C) are in A.P., then cot A, cot B and cot Care in
If \[\tan\alpha = \frac{x}{x + 1}\] and
Express the following as the sum or difference of sine or cosine:
`cos (7"A")/3 sin (5"A")/3`
Express the following as the product of sine and cosine.
sin A + sin 2A
Prove that:
tan 20° tan 40° tan 80° = `sqrt3`.
Prove that:
sin A sin(60° + A) sin(60° – A) = `1/4` sin 3A
Prove that:
`(cos 7"A" +cos 5"A")/(sin 7"A" −sin 5"A")` = cot A
Prove that cos 20° cos 40° cos 60° cos 80° = `3/16`.
If cosec A + sec A = cosec B + sec B prove that cot`(("A + B"))/2` = tan A tan B.
If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.